CYLINDRICITY OF ISOMETRIC IMMERSIONS BETWEEN HYPERBOLIC SPACES

BY

S. ALEXANDER AND E. PORTNOY

ABSTRACT. The motivation for this paper was to prove the following analogue of the Euclidean cylinder theorem: any umbilic-free isometric immersion $\eta\colon H^{n-1}\to H^n$ between hyperbolic spaces takes the form of a hyperbolic (n-2)-cylinder over a uniquely determined parallelizing curve in $\overline{H^n}$. Our approach is through the more general study of isometric immersions generated by one-parameter families of hyperbolic k-planes without focal points. A by-product of this study is a natural extension to curves in $\overline{H^n}$ of the notion of a parallel family of k-planes along a curve in H^n ; the extension is based on spherical symmetry of variation fields. Existence and uniqueness properties of this extended notion of parallelism are considered.

By a well-known theorem of Hartman and Nirenberg, every isometric immersion $\eta\colon E^{n-1}\to E^n$ between Euclidean spaces takes the form of a Euclidean (n-2)-cylinder [2]. That is, $\eta(E^{n-1})$ may be obtained by parallel translation of an (n-2)-plane in E^n along a base curve, where infinitely many choices of base curve are clearly possible. The analogous problem of determining the isometric immersions $\eta\colon H^{n-1}\to H^n$ between hyperbolic spaces of curvature -1 was posed by Nomizu in [4]. One may modify this problem by considering only the immersions which are umbilic-free, that is, have nowhere vanishing second fundamental form. Such an immersion is well known to be generated by hyperbolic (n-2)-planes (complete, (n-2)-dimensional, totally geodesic submanifolds) in H^n [5]. The umbilic-free isometric immersions of H^{n-1} into H^n were characterized by Ferus in [1]. Ferus' analysis is concerned with the orthogonal trajectories of the generators (for example, see Theorem 3 below), and does not touch on the question of parallelization.

This paper studies isometric immersions $\eta: M \to H^n$ generated by one-parameter families, without focal points, of hyperbolic k-planes. For such an immersion, the sectional curvatures of M satisfy $K_M < -1$; if $K_M = -1$ then M is isometric to an open subset of H^{k+1} . The original motivation for this study was to prove Theorem 6, which states that any umbilic-free isometric immersion of H^{n-1} into H^n takes the form of a hyperbolic (n-2)-cylinder

over a uniquely determined parallelizing curve in \overline{H}^n (see further remarks below). Here $\overline{H}^n = H^n \cup H_{\infty}^n$, where H_{∞}^n denotes the equivalence classes of asymptotic geodesic rays in H^n . This theorem offers an interesting analogue to the Euclidean cylinder theorem. The possibility of such an analogue was suggested by the classification of developable surfaces in H^3 , Theorem 2, [6].

In §1, for any immersion $\eta: M \to H^n$ generated by a family of hyperbolic k-planes, the existence of a uniquely determined striction curve is obtained (Theorem 1). The striction point on a given k-plane is defined in terms of the variation field of the family; this is a vector field defined on and orthogonal to the k-plane, and "tangent to the family". If furthermore $K_M = -1$, it is shown that the striction curve is also the unique parallelizing curve in \overline{H}^n of the family, so that the immersion takes the form of a hyperbolic k-cylinder (Theorem 2).

Here it is necessary to extend to curves in \overline{H}^n , the obvious notion of a parallel family of hyperbolic k-planes along a curve in H^n . This is done in a natural way, by proving first that a family $\{H_c\}_{c \in I}$ of k-planes is parallel along a regular curve $\sigma: I \to H^n$ if and only if for each c, the variation field is covariantly constant on the metric spheres in H_c about $\sigma(c)$ (Proposition 1). Then the extension to curves $\sigma: I \to \overline{H}^n$ is obtained simply by substituting "horospheres" for "metric spheres" if $\sigma(c) \in H^n_\infty$.

§2 considers foliations of H^n by (n-1)-planes, and contains a criterion for generating such a foliation by parallel translation along a curve in H^n (Theorem 4). §3 studies isometric immersions of H^{k+1} into H^n generated by families of k-planes. For example, it is shown that any parallel family $\{H_c\}$ along a unit-speed curve $\sigma: R \to H^n$, for which the angle between the family and σ is bounded away from zero, generates an immersion of H^{k+1} into H^n (Theorem 5). Umbilic-free isometric immersions of H^{n-1} into H^n are also discussed in §3.

§4 examines the implications of the extension to curves in \overline{H}^n of the notion of parallel k-plane families. A differentiable manifold-with-boundary structure is placed on \overline{H}^n , namely that induced by the projective model of H^n . Along a regular curve σ lying on H^n_∞ , the parallel translation problem has a unique solution for any allowable initial condition (Theorem 8). Of course, unique solutions always exist when σ lies in H^n . Solutions do not generally exist if σ takes both finite and infinite values (the question concerns piecing together solutions of two different problems, because of constraints which operate at H^n_∞). However, if a solution exists, it is unique (Corollary 4).

The method of \$4 is to convert the study of hyperbolic k-plane families into the study of Euclidean k-plane families, by using the projective model of H^n . Instead of the parallelizing curve of a hyperbolic family, one may examine the family of focal sets of a Euclidean family (Theorem 7). The classical

approach to focal families (that is, to characteristics and envelopes) seems to be highly computational. Our approach is concise, coordinate-free, and new as far as we know.

Finally, in illustration of the preceding section, §5 examines families of hyperbolic k-planes having parallelizing curves in \overline{H}^n of certain special types.

Our conventions are as follows. On H^n , g or \langle , \rangle denotes the Riemannian metric, ∇ denotes covariant differentiation, and D denotes distance. Geodesics are always parametrized by arc-length. In §§1-3, no differentiable structure is assumed for \overline{H}^n . A curve is simply a map of an interval unless otherwise described. "Corollary 1.1" refers to part 1 of Corollary 1.

1. Families of k-planes in H^n . Let (T_1, \ldots, T_k) be a smooth map of an open interval I into the bundle of k-frames on H^n , and H_c be the hyperbolic k-plane tangent to $(T_1, \ldots, T_k)(c)$ for each $c \in I$. Then the parametrized k-planes $\{H_c\}_{c \in I}$ will be called a *(one-parameter) family* in H^n . The map (T_1, \ldots, T_k) will be called a *frame* for the family, and its projection $\alpha = \pi \circ (T_1, \ldots, T_k)$: $I \to H^n$, a base curve.

Such a family of hyperbolic k-planes determines a variation vector field V_c on each of its members H_c , defined as follows: V_{cp} is the component of $\beta'(c)$ orthogonal to H_c , for any smooth curve β in H^n satisfying $\beta(c) = p$ and $\beta(c + \delta) \in H_{c+\delta}$, $|\delta| < \varepsilon$. To see that the orthogonal components for all such curves β agree, one may observe that if any one such β is transverse to H_c at p, then the $H_{c+\delta}$ locally determine a (k + 1)-dimensional submanifold M(p) through p in H^n , and are the level hypersurfaces of a regular function x on M(p). Since by assumption every β satisfies $x \cdot \beta = id$, then with respect to the H^n -induced metric on M(p), for every β the component of $\beta'(c)$ orthogonal to the level hypersurface H_c is $\|\text{grad } x\|^{-2}$ grad x.

The zeroes of the variation field V_c form the *focal set* at c of the family $\{H_c\}$. The family is *regular* at c if V_c does not vanish identically.

Given a frame for the family, define $\eta: I \times \mathbb{R}^k \to H^n$ by

(1)
$$\eta(c, c_1, \ldots, c_k) = \exp \sum_{i=1}^k c_i T_i(c).$$

Denote by x, x_i and X, X_i respectively the coordinate functions and vector fields on $I \times \mathbb{R}^k$. Then $\eta_* X$ at x = c is an H^n -Jacobi field on H_c (that is, Jacobi along every geodesic in H_c). Since by definition, V_c coincides with the component of $\eta_* X$ orthogonal to H_c , it follows from the form of Jacobi fields in H^n that V_c is Jacobi. Therefore the length function

$$l_c = ||V_c||$$

on H_c (carrying the H^n -induced metric) is convex, and strictly convex where nonvanishing. Since H_c is isometric to H^k , the following lemma applies:

LEMMA 1. For any convex function $f: H^k \to \mathbb{R}$, the limit of f along a geodesic ray in a fixed asymptote class is independent of the choice of ray.

PROOF. By convexity, $f \circ \gamma$ has a limit in $[-\infty, \infty]$ along any geodesic ray γ . For j=1,2, suppose $\lim f \circ \gamma_j = n_j$, where $n_1 \le n_2$ and γ_1 and γ_2 are distinct asymptotic rays. Choose sequences $\{p_{1i}\}$ and $\{p_{2i}\}$ diverging to infinity along γ_1 and γ_2 respectively, and a point q in the hyperbolic 2-plane containing γ_1 and γ_2 , such that p_{2i} lies on the geodesic segment δ_i joining p_{1i} and q. Then $D(p_{1i}, p_{2i})$ is bounded while $D(p_{2i}, q)$ becomes arbitrarily large. Since $f \circ \delta_i$ is convex, $n_1 < n_2$ would contradict finiteness of f(q). Therefore $n_1 = n_2$, as required.

Now let the variation function \bar{l}_c : $\bar{H}_c \rightarrow [0, \infty]$ be the extension, whose existence is guaranteed by Lemma 1, of the length function given by (2).

LEMMA 2. If a family $\{H_c\}$ of k-planes in H^n has no focal points at c, then the variation function at c has a single minimum point, which is the limit as $\delta \to 0$ of the point of \overline{H}_c closest to $H_{c+\delta}$.

PROOF. It is a consequence of strict convexity that l_c has at most one critical point and \bar{l}_c has exactly one minimum point. (If \bar{l}_c is finite at a point $p \in H_{c\infty}$, then l_c must decrease on all geodesic rays to p.)

For $p \in H_c$, let $\beta_p(c+\delta)$ be the point of $H_{c+\delta}$ nearest p. Then it is not hard to see that $\beta_p = \exp_p kN$ for smooth function k and vector-valued function N, where k(c) = 0 and $N(c) \perp H_c$. Since $\beta_p'(c) = k'(c)N(c)$, which is orthogonal to H_c , then $V_{cp} = \beta_p'(c)$. It follows that

(3)
$$l_{c}(p) = \lim_{\delta \to 0^{+}} \left[D(p, H_{c+\delta}) / \delta \right].$$

The function $D(\cdot, H_{c+\delta})$ on H_c is strictly convex, and therefore extends to $\overline{H_c}$ with exactly one minimum point p_{δ} . From (3) and the fact that convergence of convex functions on Riemannian manifolds is uniform on compact subsets, we may conclude easily that p_{δ} converges to the minimum point of $\overline{l_c}$, as was claimed. This completes the proof of Lemma 2.

Next suppose $\{H_c\}_{c \in I}$ is a family without focal points. Let $M = \{(c, p): c \in I, p \in H_c\}$, and define $\eta: M \to H^n$ by $\eta(c, p) = p$. A frame (T_1, \ldots, T_k) for the family determines an obvious coordinatization of M by $I \times R^k$, for which η is expressed by (1); and thus determines a differentiable structure on M, with respect to which η is an immersion. This structure is independent of choice of frame. Letting M carry the η -induced Riemannian metric, we say that the isometric immersion $\eta: M \to H^n$ is generated by the family, and has generators H_c . In what follows, we shall sometimes suppress η , identifying M locally with its image in H^n .

Observe that by the Gauss equation, sectional curvatures of M satisfy $K_M \leq -1$, with equality holding if and only if the normalized variation field

 $l_c^{-1}V_c$ is covariantly constant on H_c for all $c \in I$.

For each $c \in I$ the variation function $\bar{l_c}$ has a unique minimum point, which by Lemma 2 it is reasonable to call the *striction point*. Note that the variation function on a given k-plane depends only up to a constant multiple on the choice of regular parametrization of the family (equivalently, of the base curve α), so the striction point is independent of that choice. If $\bar{l_c}(p) = 0$ for some $p \in H_{c\infty}$, we say the family is asymptotic at p; this terminology is justified by (3).

THEOREM 1. Let $\eta\colon M\to H^n$ be the isometric immersion generated by a family $\{H_c\}_{c\in I}$ of hyperbolic k-planes without focal points. Then there is a uniquely determined curve $\sigma\colon I\to \overline{H^n}$ which satisfies: (i) $\sigma(c)\in \overline{H_c}$ for all $c\in I$; (ii) the generators are M-parallel along $\sigma|J$ when $\sigma|J$ lies in H^n ; (iii) the generators are asymptotic at $\sigma(c)$ when $\sigma(c)\in H^n_\infty$. The curve σ coincides with the curve of striction points.

PROOF. Note that here we regard $\overline{H_c}$ as lying in $\overline{H^n}$, in the natural way. Given $c_0 \in I$, it suffices to prove that the theorem holds for some open subinterval about c_0 . Therefore there is no loss of generality in assuming that M is coordinatized with respect to a base curve α orthogonal to the H_c . Thus we assume M carries coordinate vector fields X, X_1, \ldots, X_k for which (supressing η and η_*) the X_i are tangent to the H_c ; the restriction of X to each H_c is Jacobi in H^n ; along α , $X = \alpha'$ and the X_i are covariantly constant in the normal bundle of α in M. Let γ be a geodesic in H_c satisfying $\gamma(0) = \alpha(c)$. By parallelism of X_i , $\nabla_{\alpha'(c)}(\Sigma c_i X_i)$ is orthogonal to H_c , where $\gamma'(0) = \Sigma c_i X_{i\alpha(c)}$ and ∇ is covariant differentiation in H^n . Therefore $\nabla_{\gamma'(0)}X$ is orthogonal to H_c . Since X is H^n -Jacobi along γ , X is orthogonal to H_c along γ . Therefore by the definition of variation field,

$$(4) X|H_c = V_c$$

and at any point of H_c ,

(5)
$$\langle \nabla_X X_i, X \rangle = \langle \nabla_X X, X \rangle = (X_i l_c) l_c.$$

Now let $\sigma(c)$ denote the striction point at c. If $\sigma|J$ lies in H^n then $\sigma|J$ is smooth (this follows from the implicit function theorem and the fact that $\sigma(c)$ is a nondegenerate critical point of l_c). Since $\{H_c\}$ has no focal points, $\sigma|J$ is regular. By (5), since $\sigma(c)$ is a critical point of l_c and H_c is totally geodesic,

$$\left\langle \nabla_{\sigma'} X_i, X \right\rangle = \left\langle \nabla_X X_i, X \right\rangle = 0.$$

Therefore the tangent k-planes to the H_c are M-parallel along $\sigma|J$, as required. Conversely, if $\sigma^*: J^* \to H^n$ is any curve in H^n satisfying $\sigma^*(c + \delta) \in H_{c+\delta}$ and parallelizing the H_c in M, then $\sigma^*(c)$ is critical for l_c , so $\sigma^*(c) = \sigma(c)$ for all $c \in J^*$.

By the Jacobi equation, if U_1, \ldots, U_{n-k} are covariantly constant orthonormal fields defined on and orthogonal to H_c , then

$$(6) V_c = \sum_{j=1}^{n-k} h_j U_j$$

where the h_j are hyperbolic functions on H_c , that is, where $(h_j \circ \gamma)'' = h_j \circ \gamma$ for every geodesic γ in H_c . If $\gamma(0) = q$, $V_{cq} = \sum a_j U_{jq}$ and $\nabla_{\gamma'(0)} V_c = \sum b_j U_{jq}$, then

(7)
$$h_i \circ \gamma(s) = a_i \cosh s + b_i \sinh s, \qquad 1 < j < n - k.$$

If the striction point $\sigma(c)$ lies at H_{∞}^n and γ is a geodesic ray to $\sigma(c)$, the limit of $h_j \circ \gamma$ is finite for all j, by definition of $\sigma(c)$. But then $a_j = -b_j$ in (7), and the limit of h_j along γ vanishes for all j. Therefore $\bar{l}_c(\sigma(c)) = 0$. Conversely, if $\bar{l}_c(p) = 0$ for some $p \in H_{c\infty}$, obviously p is the striction point at c. This completes the proof of Theorem 1.

The proof of Theorem 1 has the following corollary, of which the second part is essentially due to Ferus [1]:

COROLLARY 1. Let $\eta: M \to H^n$ be the isometric immersion generated by a family $\{H_c\}$ of hyperbolic k-planes without focal points. 1. The curvature vector in M of an orthogonal trajectory to the generators at any $q \in H_c$ is $(-l_c^{-1} \operatorname{grad} l_c)_a$.

2. If M has constant sectional curvature -1, then the curvature in M of such a curve does not exceed 1.

PROOF. 1. Our notation will be that of the preceding proof. Since X is orthogonal to the H_c , the curvature vector in question is the orthogonal projection tangent to H_c of $||X||^{-2}\nabla_X X$ at q. But by (5) and (4),

$$\langle ||X||^{-2} \nabla_X X, X_i \rangle = -l_c^{-1} X_i l_c = \langle -l_c^{-1} \operatorname{grad} l_c, X_i \rangle.$$

2. If M has constant sectional curvature -1, then in (6) we may take $h_1 = l_c$ and $h_j = 0$ for j > 1. Thus $l_c \circ \gamma(s) = a \cosh s + b \sinh s$ for any geodesic γ in H_c , by (7), where $|a^{-1}b| \le 1$ since $l_c > 0$. If γ is chosen so that

$$\gamma(0) = q$$
 and $\gamma'(0) = \left(-\|\operatorname{grad} l_c\|^{-1} \operatorname{grad} l_c\right)_{c}$

then $a = l_c(q)$, $b = -\|\text{grad } l_c\|(q)$, and $|a^{-1}b|$ is the required curvature at q by part 1.

REMARK 1. By Corollary 1.1, an orthogonal trajectory is an M-geodesic if and only if it coincides with the striction curve.

PROPOSITION 1. A family $\{H_c\}$ of hyperbolic k-planes is H^n -parallel along an arbitrary regular base curve σ in H^n if and only if for each c, the variation field at c is covariantly constant on metric spheres in H_c about $\sigma(c)$.

PROOF. If V_c is covariantly constant on metric spheres about some $q \in H_c$, then for h_j as in (6), $(h_j \circ \gamma)'(0) = 0$ for any geodesic γ in H_c with $\gamma(0) = q$; hence $b_j = 0$ for all j, in (7). It follows that V_c is covariantly constant on metric spheres in H_c about q if and only if

(8)
$$V_{cp} = a \cosh D(p, q) U_p$$

where U is a covariantly constant unit normal to H_c .

Now suppose $V_{c\sigma(c)} \neq 0$. Locally the family generates an imbedded submanifold which, as in the proof of Theorem 1, carries coordinate vector fields X, X_1, \ldots, X_k . Here the restriction of X to each member of the family coincides with the variation field, the X_i are tangent to the family, and (5) is satisfied. If V_c is covariantly constant on spheres about $\sigma(c)$, then $\sigma(c)$ is critical for the length function l_c . Furthermore, on H_c , $\nabla_{X_i}X$ is proportional to X by (8). Therefore $\nabla_X X_i = 0$ at $\sigma(c)$ by (5), so that $\nabla_{\sigma'(c)} X_i$ is tangent to H_c , as required. Conversely, if $\nabla_{\sigma'(c)} X_i$ is tangent to H_c , then so is $\nabla_X X_i$ at $\sigma(c)$, since $\sigma'(c)$ is transverse to H_c by assumption. Since $\langle \nabla_{X_i} X, X_j \rangle = -\langle \nabla_{X_i} X_j, X \rangle = 0$, it follows that $\nabla_{X_i} X = 0$ at $\sigma(c)$. Therefore by (7), V_c is covariantly constant on spheres about $\sigma(c)$.

Suppose instead that $V_{c\sigma(c)} = 0$. Define a map $\eta: I \times \mathbb{R}^k \to H^n$ by (1), for any choice of frame over σ . It suffices to show that V_c is covariantly constant on spheres about $\sigma(c)$ if and only if if the k vectors

$$Y_i = \nabla_{\sigma'(c)} (\eta_* X_i |_{x^1 = \dots = x^k = 0}) = \nabla_{\eta_i} X_i (\eta_* X |_{x = c}) \quad \text{at } \sigma(c)$$

are tangent to H_c . If V_c is constant on spheres about $\sigma(c)$, then V_c vanishes identically, by (8). Since V_c is the component of $\eta_* X|_{x=c}$ orthogonal to H_c , it follows that the Y_i are tangent to H_c . Conversely, if the Y_i are tangent to H_c , then for any geodesic γ with $\gamma(0) = \sigma(c)$, we have $b_j = 0$ in (7). Since $a_j = 0$ by assumption, V_c vanishes identically. Thus Proposition 1 is proved.

We shall call a family $\{H_c\}_{c\in I}$ of hyperbolic k-planes parallel in \overline{H}^n along a curve $\sigma\colon I\to \overline{H}^n$ if for each c, $\sigma(c)\in \overline{H}_c$, and the variation field at c is covariantly constant on metric spheres about $\sigma(c)$ if $\sigma(c)\in H_c$, or on horospheres about $\sigma(c)$ if $\sigma(c)\in H_{c\infty}$. (In the latter case, the variation function will be shown to vanish at $\sigma(c)$.) By Proposition 1, this definition is simply an extension of the usual one.

PROPOSITION 2. Let $\eta \colon M \to H^n$ be the isometric immersion generated by a family $\{H_c\}_{c \in I}$ without focal points, and let $\sigma \colon I \to \overline{H}^n$ be the striction curve of the family. Then M has constant sectional curvature -1 if and only if the family is parallel in \overline{H}^n along σ .

PROOF. Recall that $K_M = -1$ if and only if for each c, $l_c^{-1}V_c$ is covariantly constant. We claim that this occurs if and only if V_c is covariantly constant on spheres about $\sigma(c)$. Indeed, if $\sigma(c) \in H_c$ and V_c is constant on metric

spheres about $\sigma(c)$, then $l_c^{-1}V_c$ is constant by (8). If $\sigma(c) \in H_\infty^n$, then $l_c^{-1}V_c$ is constant on each geodesic ray to $\sigma(c)$ by the remarks following (7); thus constancy on horospheres about $\sigma(c)$ implies constancy on all of H_c .

For the converse, consider any H^n -Jacobi field on H_c of the form lU, where l>0, U is a given covariantly constant unit normal to H_c , and l has a given value at some fixed point of H_c . Such a field is determined by choice of minimum point $q \in \overline{H_c}$ for l, since l is hyperbolic. Since l is a constant multiple of $\cosh D(\cdot, q)$ when q is finite, then l is constant on metric spheres about q when $q \in H_c$, and by a limit argument, on horospheres about q when $q \in H_{c\infty}$.

THEOREM 2. A regular family $\{H_c\}_{c\in I}$ of hyperbolic k-planes is without focal points and generates an immersed submanifold of constant curvature -1 if and only if the family is parallel in \overline{H}^n along some curve $\sigma\colon I\to \overline{H}^n$. If such a parallelizing curve σ exists, it is unique.

PROOF. It suffices, by Proposition 2, to show that if the family is regular and parallel in \overline{H}^n along some σ , then there are no focal points and σ is the striction curve of the family. But if V_c is covariantly constant on metric spheres about some $q \in H_c$, then V_c is given by (8). Thus V_c never vanishes because it does not vanish identically, and q is the striction point at c. If V_c is constant on horospheres about $q \in H_{c\infty}$, then again V_c never vanishes, because otherwise the zero set of V_c would be a hyperbolic r-plane for $0 \le r < k$, and no such r-plane contains a horosphere of H_c . Furthermore, since the striction point is the unique minimum point of the length function I_c , this point is certainly q.

REMARK 2. A submanifold of the type considered in Theorem 2 is always isometric to an open subset of H^{k+1} (see Proposition 3).

REMARK 3. We shall see in §4 that if \overline{H}^n is given the manifold-with-boundary structure induced by the projective model of H^n , then the parallelizing curve σ of Theorem 2 is smooth in \overline{H}^n . Furthermore, when σ lies at infinity there are constraints on the derivatives of σ . For example, if k = 1, σ' vanishes at infinity (Corollary 2); thus if σ lies at infinity on an interval, it is constant there, and the immersion takes the form of an asymptotic cone.

2. Foliations of H^n by hyperplanes. Let \mathfrak{F} denote a foliation of H^n by hyperbolic (n-1)-planes. We shall require the following important theorem of Ferus concerning such foliations:

THEOREM 3 [1]. 1. For any $p \in H^n$ and any regular curve α in H^n with curvature $\kappa < 1$, the function $D(\alpha(t), p)$ has at most one critical point, namely a strict relative minimum point, and is unbounded if α has infinite length. In consequence:

- 2. The family of orthogonal hyperplanes to a regular curve with $\kappa \leq 1$ is without self-intersections.
- 3. For a regular curve with $\kappa \leq 1$ and unbounded length in both directions, the family of orthogonal hyperplanes foliates H^n .

REMARK 4. A family $\{H_c\}$ of hyperplanes in H^n is without focal points if and only if it is without self-intersections. Corollary 1.2 and Theorem 3.2 imply that if there are no focal points then there are no self-intersections. On the other hand, since the variation field for an arbitrary hyperplane family, possibly with focal points, is of the form hU where U is covariantly constant and h is hyperbolic, the focal set in H_c is nonempty only if it is an (n-2)-plane on either side of which h takes opposite signs. Observing that h is given by the expression in (3), where D is interpreted as directed distance toward U, one may show that each focal point is the limit of intersection points of H_c and $H_{c+\delta}$ as $\delta \to 0$. Thus our remark is verified.

Given a foliation \mathscr{F} of H^n by hyperplanes, one always may choose a regular curve $\alpha\colon I\to H^n$ of infinite length which is everywhere orthogonal to \mathscr{F} . By Corollary 1.2 and Theorem 3.3, the family of hyperplanes orthogonal to α is all of \mathscr{F} . Therefore \mathscr{F} corresponds to a regular one-parameter family $\{H_c\}_{c\in I}$ (without focal points) of hyperplanes in H^n , and by Theorem 2, possesses a uniquely determined parallelizing curve $\sigma\colon I\to \overline{H}^n$.

The following theorem gives a necessary and sufficient condition that a given curve σ in H^n and initial transverse hyperplane determine by parallel translation a foliation of H^n .

THEOREM 4. Let $\sigma: \mathbb{R} \to H^n$ be a unit-speed curve, H_0 a hyperbolic (n-1)-plane through $\sigma(0)$, and H_c the parallel translate of H_0 along σ to $\sigma(c)$.

- 1. $\{H_c\}$ is without focal points if and only if H_c is transverse to $\sigma'(c)$ for all $c \in \mathbb{R}$.
- 2. Assuming that $\{H_c\}$ is without focal points, let $\theta(c) \in (0, \pi/2]$ be the angle between H_c and $\sigma'(c)$. Fix $q \in H^n$. Then $\{H_c\}$ foliates H^n if and only if

$$\int_0^\infty f(x) \ dx = \infty \quad and \quad \int_{-\infty}^0 f(x) \ dx = \infty,$$

where $f(x) = \sin \theta(x) \cosh D(q, \sigma(x))$. In particular:

- 3. $\{H_c\}$ foliates H^n if θ is bounded away from zero.
- PROOF. 1. By (8) and the definition of variation field, $V_{cp} = a \cdot \cosh D(p, \sigma(c)) U_p$, where U is a covariantly constant unit normal to H_c and $a = \langle \sigma'(c), U \rangle = \sin \theta(c)$. Thus V_c is nowhere vanishing if $\theta(c) \neq 0$ and vanishes identically if $\theta(c) = 0$.
- 2. Let $\alpha: I \to H^n$ be a maximal curve satisfying $\alpha(c) \in H_c$ and $\alpha'(c) = V_{c\alpha(c)}$ for all $c \in I$. Since $\{H_c\}_{c \in I}$ is without focal points and α is an

orthogonal trajectory, the curvature of α does not exceed 1. The length of α is unbounded in both directions if and, by Theorem 3.3, only if $I = \mathbf{R}$ and $\{H_c\}$ foliates H^n .

Suppose $\{H_c\}$ does not foliate H^n . We may assume α has finite length in the positive direction. Finiteness and maximality of α imply that the domain of α includes $[d, \infty)$ for some d. Then

$$\|\alpha'(x)\| = \sin \theta(x) \cosh D(\alpha(x), \sigma(x))$$

$$\ge \sin \theta(x) \cosh [D(q, \sigma(x)) - D(q, \alpha(x))]$$

$$\ge L f(x)$$

for some L > 0 independent of $x \in [d, \infty)$, since $D(q, \alpha(x))$ is bounded on $[d, \infty)$. Therefore $\int_{\alpha}^{\infty} f(x) dx < \infty$.

Now, suppose $\{H_c\}$ foliates H''. Choose α to pass through q. By Theorem 3.1, $D(\alpha, \sigma(x)) = D(\alpha(x), \sigma(x)) \le D(q, \sigma(x))$ for each x. Therefore $\|\alpha'(x)\| \le f(x)$, and since α has unbounded length in both directions, the required divergence of integrals follows.

Example 1. Let $\sigma: \mathbb{R} \to H^n$ be any unit-speed curve with total curvature

$$\int \|\nabla_{\sigma'}\sigma'\| < \pi,$$

with each of

$$\int_0^\infty \|\nabla_{\sigma'}\sigma'\| \quad \text{and} \quad \int_{-\infty}^0 \|\nabla_{\sigma'}\sigma'\|$$

less than $\pi/2$; and let H_0 be orthogonal to σ . Then the family of parallel translates foliates H^n .

Indeed, suppose I is a maximal interval about 0 on which the family is transverse to σ , and let U be the unit normal to the family along $\sigma|I$ in the direction of $\sigma'(c)$. Then

$$\left|\left\langle \sigma', U \right\rangle'\right| = \left|\left\langle \nabla_{\sigma'} \sigma', U \right\rangle\right| \le \|\nabla_{\sigma'} \sigma'\| \cos \theta,$$

whence $|\theta'| \le ||\nabla_{\sigma'}\sigma'||$, where θ is the angle between σ' and H_c . Therefore our hypothesis implies that θ is bounded away from 0 on I. But then $I = \mathbf{R}$ and the claim follows by Theorem 4.3.

3. Isometric immersions of H^{k+1} into H^n . First we take note of the global structure of an immersed submanifold of H^n of the type considered in Theorem 2:

PROPOSITION 3. Let $\eta: M \to H^n$ be the isometric immersion generated by a family of hyperbolic k-planes without focal points. If $K_M = -1$ then M is isometric to an open submanifold of H^{k+1} .

PROOF. Since M and H^{k+1} are analytic and locally isometric, and since M

is simply connected, there exists an isometric immersion $\iota: M \to H^{k+1}$ ([3, pp. 255 and 263]). By assumption, M is foliated by a family $\{\tilde{H}_c\}$ of complete, totally geodesic submanifolds (where $\eta(\tilde{H}_c) = H_c$). But then $\iota(\tilde{H}_c)$ is a k-plane in H^{k+1} for each c. Since ι is an immersion, the family $\{\iota(\tilde{H}_c)\}$ is without focal points. By Remark 3, $\{\iota(H_c)\}$ is without self-intersections, and it follows that ι is one-one.

REMARK 5. Consider an isometric immersion $\eta\colon M\to H^n$ such as is described in Proposition 3, and identify M with an open submanifold of H^{k+1} . Then M is foliated by a family $\{\tilde{H}_c\}$ of hyperbolic hyperplanes, where $\eta(\tilde{H}_c)=H_c$. Denote by $\tilde{\sigma}\colon I\to \overline{H}^{k+1}$ and $\sigma\colon I\to \overline{H}^n$ the parallelizing curves of the families $\{\tilde{H}_c\}$ and $\{H_c\}$ respectively (the existence of $\tilde{\sigma}$ and σ is guaranteed by Theorem 2), and by $\eta_c\colon (\tilde{H}_c)\to \overline{H}_c$ the natural identification extending $\eta|\tilde{H}_c$. If \tilde{V}_c and V_c are the variation fields at c for the respective families, then $\eta_*\tilde{V}_c$ is orthogonal to H_c since η is isometric. Therefore $\eta_*\tilde{V}_c=V_c$, and $\eta_c\circ\tilde{\sigma}(c)=\sigma(c)$ for all $c\in I$.

The following construction of a class of isometric immersions of H^{k+1} into H^n depends upon Theorem 4:

THEOREM 5. Let $\sigma: \mathbf{R} \to H^n$ be a unit-speed curve, H_0 a hyperbolic k-plane through $\sigma(0)$, and H_c the parallel translate of H_0 along σ to $\sigma(c)$. Let $\theta(c)$ be the angle between $\sigma'(c)$ and H_c , for each $c \in \mathbf{R}$. If θ is bounded away from zero, then the family $\{H_c\}$ generates an isometric immersion $\eta: H^{k+1} \to H^n$. The immersion η is umbilic-free if and only if the curvature vector in H^n of σ at c is transverse to the span of $\sigma'(c)$ and H_c for each $c \in \mathbf{R}$.

PROOF. The family $\{H_c\}$ is regular since it is transverse to σ . Therefore by Theorem 2, $\{H_c\}$ generates an isometric immersion $\eta\colon M\to H^n$ where M has curvature -1. By Proposition 3, M may be identified with an open submanifold of H^{k+1} . Since η is an isometric immersion, we have a unit-speed curve $\tilde{\sigma}\colon \mathbb{R}\to M$, and a family $\{\tilde{H}_c\}$ of hyperbolic k-planes which foliates M and is parallel along $\tilde{\sigma}$, and whose angle with $\tilde{\sigma}$ is bounded away from zero (where $\eta\circ\tilde{\sigma}=\sigma$ and $\eta(\tilde{H}_c)=H_c$). But then by Theorem 4.3, $\{\tilde{H}_c\}$ foliates H^{k+1} , and so $M=H^{k+1}$.

Let K be the open submanifold of H^{k+1} on which the nullity of the second fundamental form of η takes its minimum value ν . Since all tangent vectors to the \tilde{H}_c are nullity vectors, $k < \nu < k+1$. Recall that the nullity foliation of K is well known to have complete leaves: for the present situation, namely immersion of H^{k+1} into H^n , completeness was proved in [5]. The transversality hypothesis on the curvature vectors of σ implies that nullity on K is k and $\tilde{\sigma}$ lies in K. Therefore K contains the complete k-plane \tilde{H}_c for every $c \in \mathbb{R}$, and so $K = H^{k+1}$ and η has no umbilics. Conversely, if there are no

umbilics, then $\nu = k$ along $\tilde{\sigma}$, and the transversality condition follows. This completes the proof of Theorem 5.

Finally we consider umbilic-free isometric immersions $\eta\colon H^{n-1}\to H^n$. For such an immersion, H^{n-1} is foliated by hyperbolic (n-2)-planes tangent to the nullity spaces of the second fundamental form. As in the previous section, the foliating (n-2)-planes may be regarded as a regular one-parameter family $\{\tilde{H}_c\}_{c\in I}$ in H^{n-1} . Since η is totally geodesic on each \tilde{H}_c , η is generated by a family $\{H_c\}_{c\in I}$, without focal points, of (n-2)-planes in H^n . Then Theorem 2 immediately yields:

THEOREM 6. Let $\eta: H^{n-1} \to H^n$ be an umbilic-free isometric immersion and $\{H_c\}_{c \in I}$ be the family of generators of η . Then there is a uniquely determined curve $\sigma: I \to \overline{H}^n$ along which the generators are parallel in \overline{H}^n .

4. Parallelization at H_{∞}^n . In order to study the behavior at infinity of the parallelizing curve of a family, we shall give \overline{H}^n the differentiable manifold-with-boundary structure of \overline{D}^n induced by the projective model. By working with the projective model, we shift our attention to families of Euclidean k-planes in E^n and their intersection properties. Although the methods of this section are Euclidean, note that all the results except Theorem 7 are results about \overline{H}^n carrying the given differentiable structure.

 g^* or \cdot will denote the standard Riemannian metric on E^n , and D^* will denote Euclidean distance. Any family $\{H_c^*\}$ of Euclidean k-planes in E^n has a variation field V_c^* at c, which is defined just as before but in terms of g^* , and which is a g^* -Jacobi field on H_c^* . Thus

(9)
$$V_c^* = \sum_{j=1}^{n-k} h_j^* U_j^*$$

where the U_j^* are constant orthonormal fields defined on and orthogonal to H_c^* , and the h_j^* are affine functions on H_c^* . The focal set F_c of $\{H_c^*\}$ at c is the intersection of the zero sets of the h_j^* , and if nonempty is an r-plane (possibly "at infinity") for some $r \ge 2k - n$. (Since the solution set of any homogeneous linear equation on a projective space is a projective hyperplane, we are justified in adopting the convention that any affine function on a Euclidean space vanishes on a hyperplane, which lies "at infinity" if the function is constant.) Since two affine functions are constant multiples of each other if and only if they have the same zeros, F_c is a (k-1)-plane if and only if we may assume $h_i^*=0$ for all j>1 in (9).

For the rest of this section, H^n will be identified with the Euclidean open unit disc D^n carrying the projective hyperbolic metric g. Unparametrized H^n -geodesics are thus identified with line segments in D^n , and totally geodesic submanifolds of H^n with totally geodesic submanifolds of D^n .

Asymptotic geodesics in H^n correspond to segments approaching the same point of $\partial D^n = S^{n-1}$. Thus H^n_{∞} is identified with S^{n-1} , and \overline{H}^n with \overline{D}^n .

To each k-plane of a given family $\{H_c\}$ in H^n may be associated the complete Euclidean k-plane H_c^* satisfying $H_c = H_c^* \cap D^n$. The hyperbolic family $\{H_c\}$ is without focal points if and only if for each c, the focal set of $\{H_c^*\}$ does not enter D^n . (Note that focal points depend only on differentiable structure, not on metric structure.) Such a family $\{H_c\}$ generates an immersed submanifold of H^n . The g-induced metric on this submanifold has curvature -1 if and only if for each c, the hyperbolic variation field V_c is tangent to a fixed hyperbolic (k+1)-plane through H_c ; hence if and only if the Euclidean variation field of $\{H_c^*\}$ is tangent to a fixed Euclidean (k+1)-plane through H_c^* . Equivalent conditions on $\{H_c^*\}$ are that the metric induced by g^* on the submanifold generated by $\{H_c^*\cap D^n\}$ is flat; or (by the second paragraph of this section) that the focal sets F_c of $\{H_c^*\}$ are all (k-1)-planes.

By Theorem 2, a hyperbolic family $\{H_c\}$ generating an immersion of curvature -1 has a unique parallelizing curve in \overline{H}^n . The following theorem relates the parallelizing curve of $\{H_c\}$ in \overline{H}^n to the focal family of $\{H_c^*\}$ in E^n via the classical notion of duality of points and hyperplanes. For any $p \in \overline{D}^n$, let p^* denote the inversion of p through S^{n-1} ; then the hyperplane through p^* and orthogonal to the line Opp^* is the dual to p through S^{n-1} .

THEOREM 7. Let $\{H_c\}_{c\in I}$ be a regular family of hyperbolic k-planes which is parallel in \overline{H}^n along a curve $\sigma\colon I\to \overline{H}^n$, and let $\{H_c^*\}$ be the associated Euclidean family. Then the focal set F_c of $\{H_c^*\}$ is the (k-1)-plane dual to $\sigma(c)$ through $H_c^*\cap S^{n-1}$.

PROOF. By Theorem 2 and remarks above, the hyperbolic and Euclidean families $\{H_c\}$ and $\{H_c^*\}$ have variation fields lU and l^*U^* respectively at c, where U is a covariantly constant unit normal to H_c , with respect to g; U^* is a constant unit normal to H_c^* , with respect to g^* ; l is positive, and hyperbolic on g-geodesics; and l^* is affine on g^* -geodesics. Moreover, U and U^* are tangent to the same (k+1)-plane P through H_c^* . By definition of variation field, the following equation holds on $H_c = H_c^* \cap D^n$:

$$l^* = lU \cdot U^*.$$

Let q be the center and r_1 the radius of $H_c^* \cap D^n$, and r_2 the radius of $P \cap D^n$. By (10) and hyperbolicity of l, if p is a fixed point of H_c then

(11)
$$l^*(p) = r_2^{-1} (ar_1^2 + br_1 D^*(q, p))$$

where a = l(q), b = Y(p)l and Y(p) is the g-unit vector at q tangent to the g-ray γ from q toward p. Since l^* is affine, formula (11) in fact holds at any $p \in H_c^*$. Therefore we may choose p so that $p \in F_c$ and $D^*(q, p)$ realizes

distance from q to F_c . Then $D^*(q, p) = -ab^{-1}r_1$ since $l^*(p) = 0$; and b (< 0) is minimized since $D^*(q, p)$ is minimized. By definition of b, it follows that the ray γ from q toward p is tangent to $-(\operatorname{grad}_e l)_q$.

Now, $\sigma(c)$ is the striction point of $\{H_c\}$, that is, the minimum point of \bar{l} . Since l is hyperbolic, $\sigma(c)$ clearly lies on this same ray γ ; and since $(l \circ \gamma)(s) = a \cosh s + b \sinh s$, then

$$D(q, \sigma(c)) = \tanh^{-1}(-a^{-1}b)$$
 and $D^*(q, \sigma(c)) = -a^{-1}br_1$.

Therefore p is the inversion of $\sigma(c)$ through $H_c^* \cap S^{n-1}$. This completes the proof of Theorem 7.

Note that it is a consequence of Theorem 7 that σ is smooth in \overline{H}^n . The following corollary gives certain properties which σ must possess at H_{∞}^n . Theorem 8 will show that these are in a sense exhaustive. (In the rest of this section, we use the following convention, based on the canonical identification with \mathbb{R}^n of each tangent space to \mathbb{R}^n . If β denotes a Euclidean curve, $\beta'(c)$, $\beta''(c)$, and $\beta^{(3)}(c)$ denote elements of the tangent space at $\beta(c)$, unless these symbols occur in an algebraic expression, in which case they denote elements of \mathbb{R}^n .)

COROLLARY 2. Let $\{H_c\}_{c\in I}$ be a family of hyperbolic k-planes which is parallel in \overline{H}^n along a smooth curve $\sigma\colon I\to \overline{H}^n$, and suppose $\sigma(c)\in H^n_\infty$ for some c. Then $\sigma'(c)$ is tangent to $H_{c\infty}$, and $\sigma''(c)$ is tangent to \overline{H}_c .

PROOF. Note that we allow the possibility that $\{H_c\}$ is not regular at c, in which case the variation fields of both $\{H_c\}$ and $\{H_c^*\}$ vanish. By Theorem 7 (or trivially, in the nonregular case), $\sigma(c)$ lies in the focal set F_c of $\{H_c^*\}$, and so the variation field for $\{H_c^*\}$ vanishes at $\sigma(c)$. It follows from the definition of variation field and the fact that $\sigma(d) \in H_d^*$ for all $d \in I$ that $\sigma'(c)$ is tangent to H_c^* . Since σ is not transverse to S^{n-1} , $\sigma'(c)$ is tangent to H_c^* or S^{n-1} .

Denote by $\sigma^*(d)$ the inversion of $\sigma(d)$ through $H_d^* \cap S^{n-1}$. By Theorem 7, $\sigma^*(d) \in F_d$ for all $d \in I$, hence $\sigma^{*'}(d)$ is tangent to H_d^* . In particular, since $\sigma^*(c) = \sigma(c)$ and σ^* is not transverse to S^{n-1} , $\sigma^{*'}(c)$ is tangent to $H_c^* \cap S^{n-1}$, and thus to F_c (since either $F_c = H_c^*$ or F_c is the hyperplane of H_c^* tangent to S^{n-1} at $\sigma(c)$). Setting $\zeta = \sigma^* + \sigma^{*'}$, we have $\zeta(d) \in H_d^*$ for all d, and $\zeta(c) \in F_c$. Therefore $\zeta'(c)$ is tangent to H_c^* . But $\sigma^{*''}(c) = \zeta'(c) - \sigma^{*'}(c)$, so $\sigma^{*''}(c)$ is also tangent to H_c^* . Moreover, it may be verified by direct computation that because σ and σ^* are inverse curves and $\sigma^{*''}(c)$ is tangent to H_c^* , then $\sigma''(c)$ is tangent to H_c^* . Corollary 2 follows.

We are interested in regular families, since they always generate submanifolds. The following condition will be useful:

Corollary 3. A parallel family $\{H_c\}$ along a regular curve $\sigma\colon I\to \overline{H}^n$ is

regular if and only if $\sigma'(c)$ is transverse to H_c whenever $\sigma(c) \in H_c$ and $\sigma^{(3)}(c)$ is transverse to \overline{H}_c whenever $\sigma(c) \in H_{con}$.

PROOF. (Note that by Theorem 2, for a parallel family regularity is equivalent to having no focal points.) When σ lies in H^n , the proof is the same as for Theorem 4.1. If $\sigma(c) \in H_\infty^n = S^{n-1}$, then $\sigma \cdot \sigma'' < 0$ at c because σ is regular; therefore $\sigma(c) + k\sigma''(c)$ lies in D^n for some k > 0, and hence in $H_c = H_c^* \cap D^n$ by Corollary 3.2. Now consider the curve $\zeta = \sigma + k\sigma''$. If $\sigma^{(3)}(c)$ is transverse to H_c^* , then so is $\zeta'(c)$, and it follows that $\{H_c\}$ is regular at c. If $\sigma^{(3)}(c)$ is tangent to H_c^* , then $\{H_c\}$ focuses at $\zeta(c)$, and so $\{H_c\}$ is not regular at c. Thus Corollary 3 is proved.

A parallelizing curve σ in \overline{H}^n of a regular family of k-planes, while always regular where σ lies in H^n , need not be regular at H^n_∞ . The regularity hypothesis on σ is necessary for the two uniqueness results which follow. Note that for a regular curve in D^n , the osculating 2-planes with respect to g and g^* agree, when they exist. Furthermore, for a regular curve in \overline{D}^n and lying on S^{n-1} at c, the osculating 2-plane at c with respect to g^* exists and enters D^n . Therefore one may speak without ambiguity of the osculating hyperbolic 2-plane at c of any regular curve σ in \overline{H}^n such that $\sigma(c) \in H^n_\infty$. For any parallel family along σ , the k-plane at c must contain this 2-plane, by Corollary 2.

THEOREM 8. Let $\sigma: I \to H_\infty^n$ be a regular curve, where $0 \in I$, and H_0 be any hyperbolic k-plane containing the osculating hyperbolic 2-plane of σ at $\sigma(0)$. Then H_0 extends uniquely to a parallel family $\{H_c\}_{c \in I}$ along σ .

PROOF. We reduce to a linear problem, that of parallel translation in the Euclidean normal bundle of σ (regarded as a curve lying on S^{n-1}). If $\{H_c\}$ is parallel along σ , then the corresponding Euclidean family $\{H_c^*\}$ has the following properties (by Corollary 2 and Theorem 7):

- (i) H_c^* contains the osculating 2-plane of σ at $\sigma(c)$, and
- (ii) the focal set F_c is either H_c^* or the hyperplane of H_c^* tangent to S^{n-1} at $\sigma(c)$.

Conversely, if $\{H_c^*\}$ is a Euclidean family satisfying (i) and (ii), then each H_c^* enters D^n by (i), and we claim that the corresponding hyperbolic family $\{H_c\}$ is parallel along σ . Where the families are not regular, constancy of the hyperbolic variation field on horospheres is obvious. Elsewhere, since each F_c is a (k-1)-plane not entering D^n , $\{H_c\}$ generates a submanifold of curvature -1 in H^n ; thus by Theorems 2 and 7, $\{H_c\}$ is parallel along σ . Therefore it suffices, for the theorem, to demonstrate existence and uniqueness of a family $\{H_c^*\}$ of Euclidean k-planes satisfying (i) and (ii), when H_0^* is given.

Suppose such a family $\{H_c^*\}$ exists. Let \mathcal{V} be the Euclidean vector bundle over σ whose (k-2)-dimensional fiber at each c is tangent to $H_c^* \cap S^{n-1}$

On the other hand, for given H_0^* let \mathcal{V}_0 consist of the vectors at $\sigma(0)$ tangent to $H_0^* \cap S^{n-1}$ and orthogonal to σ , and \mathcal{V} be the parallel extension of \mathcal{V}_0 in the Euclidean normal bundle of σ . Then \mathcal{V} is always tangent to S^{n-1} . Letting H_c^* be the k-plane through $\sigma(c)$ tangent to $[\mathcal{V}, \sigma', \sigma'']_c$, we have a family satisfying (i). For (ii), it suffices to verify that $[\mathcal{V}, \sigma']_c$ is always tangent to the focal set F_c of $\{H_c^*\}$. But for any curve of the form $\zeta = \sigma + v + f\sigma'$ with v a section of \mathcal{V} , then $\zeta'(c) \in [\mathcal{V}, \sigma', \sigma'']_c$ and so $\zeta'(c)$ is tangent to H_c^* . Therefore $\zeta(c) \in F_c$, as required. Thus we have constructed a family $\{H_c^*\}$ satisfying (i) and (ii).

COROLLARY 4. Let $\sigma: I \to \overline{H}^n$ be a regular curve, where $0 \in I$, and H_0 be a hyperbolic k-plane at $\sigma(0)$. If there exists a parallel family along σ extending H_0 , then that family is unique.

PROOF. Note that if two hyperbolic k-planes intersect, one may speak of the hyperbolic angle between them; this angle is measured in the (n-r)-plane which is g-orthogonal to the intersection r-plane P at any $p \in P$, and is independent of the choice of p. We shall show that any two parallel families $\{H_{1c}\}$ and $\{H_{2c}\}$ of k-planes along a given regular curve $\sigma\colon I\to \overline{H}^n$ have constant intersection dimension, and form a constant angle.

Note that $H_{1c} \cap H_{2c} \neq \emptyset$. Indeed, if $\sigma(c) \in H^n$ then $\sigma(c)$ lies in this intersection, and if $\sigma(c) \in H^n_{\infty}$ then this intersection contains a 2-plane at least. Let I_0 be a maximal subinterval of I on which the intersection dimension takes its minimum for I. Then I_0 is open in I. The angle between the two families is smooth on I_0 , and certainly is constant on any subinterval on which σ lies entirely in H^n . Furthermore, it follows from the proof of Theorem 8 that the angle is constant on any subinterval J of I_0 on which σ lies entirely in H^n_{∞} : In the notation of that proof, suppose H_{ic} corresponds to $[\mathcal{V}_i, \sigma', \sigma'']_c$, for each $c \in J$. It may be verified that the hyperbolic angle between H_{1c} and H_{2c} is equal to the Euclidean angle between $[\mathcal{V}_1, \sigma']_c$ and $[\mathcal{V}_2, \sigma']_c$, since $[\mathcal{V}_i, \sigma']_c$ is tangent to $H_{ic} \cap S^{n-1}$ at $\sigma(c)$. In turn, the Euclidean angle between the $[\mathcal{V}_i, \sigma']$ equals that between the $[\mathcal{V}_i]$ since the $[\mathcal{V}_i]$ are orthogonal to σ' . This angle is constant on J because the $[\mathcal{V}_i]$ are parallel in the Euclidean normal bundle of $\sigma|J$.

Therefore the hyperbolic angle between the two families has vanishing

derivative on a dense subset of I_0 , hence is constant on I_0 . It follows that I_0 is closed in I, and $I_0 = I$.

REMARK 6. Given a regular curve $\sigma: I \to \overline{H}^n$, and an initial k-plane H_0 , there may be no parallel family on σ extending H_0 . For example, if $\sigma(0) \in H^n$, the the parallel translate of H_0 along σ as σ approaches H_{∞}^n may have more than one limit k-plane, or none at all.

5. Examples. By way of illustration, we examine families of hyperbolic k-planes which have parallelizing curves in \overline{H}^n of special type. Our conventions are the same as in §4.

EXAMPLE 2. A family $\{H_c\}_{c\in I}$ without focal points is parallel along an orthogonal trajectory $\sigma\colon I\to H^n$ if and only if the corresponding Euclidean k-planes H_c^* all pass through a fixed (k-1)-plane not meeting \overline{D}^n . This may be seen as follows.

Note that if σ is both parallelizing and orthogonal, then σ lies in a hyperbolic (n-k)-plane orthogonal to the H_c . To see this, observe that the family $\{H_c^{\perp}\}$ of hyperbolic (n-k)-planes, where $H_c^{\perp} \cap H_c = \sigma(c)$ and H_c^{\perp} is orthogonal to H_c , is parallel along and tangent to σ . Thus the variation field at c of $\{H_c^{\perp}\}$ vanishes at $\sigma(c)$, and, by Theorem 2, vanishes identically. Therefore the H_c^{\perp} coincide, in an (n-k)-plane containing σ . Now, it can be shown that a hyperbolic k-plane is orthogonal to a given hyperbolic (n-k)-plane H if and only if the corresponding Euclidean k-plane lies in the pencil through a certain Euclidean (k-1)-plane, not meeting \overline{D}^n , determined by H. Thus, since the H_c are all orthogonal to a fixed (n-k)-plane, it follows that the H_c^* all pass through a fixed (k-1)-plane.

The converse follows from Theorem 7 and the fact that, if $\{H^*\}$ now denotes the collection of Euclidean k-planes passing through a fixed (k-1)-plane F and entering D^n , the dual points of F in all the H^* form a hyperbolic (n-k)-plane which is g-orthogonal to each $H = H^* \cap D^n$.

EXAMPLE 3. A family $\{H_c\}$ has constant parallelizing curve in H_∞^n if and only if the H_c^* all pass through a fixed (k-1)-plane tangent to S^{n-1} . Here it suffices to verify that if the parallelizing curve σ is constant at H_∞^n , then the focal family $\{F_c\}$ of $\{H_c^*\}$ is constant. If $\{F_c\}$ is not constant, then at some c the variation field of $\{F_c\}$ does not vanish identically on F_c . This field is defined on the hyperplane F_c of H_c^* and is tangent to H_c^* . Since all $F_{c+\delta}$ lie in the tangent plane to S^{n-1} at the image point of σ , it follows that H_c^* is tangent to S^{n-1} , which is impossible since H_c^* enters D^n .

EXAMPLE 4. The osculating Euclidean 2-planes of a regular curve σ lying on S^{n-1} and having nowhere vanishing torsion (second order curvature function) correspond to a regular family of hyperbolic 2-planes which is parallel along σ . Indeed, parallelism along σ follows from the proof of Theorem 8. Regularity is a consequence of Corollary 3 and the torsion

assumption. Conversely, all regular hyperbolic 2-plane families which are parallel along a regular curve in H_{∞}^n are obtained in this way, by Corollaries 2 and 3.

Now suppose n=3, and consider all foliations of H^3 by 2-plane families whose parallelizing curves are regular curves in H^3_∞ . These foliating families correspond precisely to the families of osculating 2-planes of regular Euclidean curves lying on S^2 , for which torsion is nonvanishing and curvature (denoted here by κ^*) becomes infinite at both endpoints. For example, a loxodrome is such a curve. It is only necessary to verify that for a unit-speed curve σ on S^2 , the osculating planes approach tangency to S^2 at an endpoint if and only if curvature becomes infinite. This follows by differentiating $\sigma \cdot \sigma' = 0$, to obtain $|\sigma \cdot \sigma''| ||\sigma''|| = 1/\kappa^*$.

EXAMPLE 5. Let $\{H_c^*\}$ be any regular family of (n-1)-planes in E^n such that each member intersects D^n . The equation of H_c^* is $y \cdot N(c) - r(c) = 0$, where N and r denote (smoothly varying) unit normal and distance from the origin respectively. Then the focal (n-2)-plane F_c in H_c^* satisfies $y \cdot N'(c) - r'(c) = 0$. (Indeed, $y \in F_c$ if and only if there is a curve β satisfying $\beta(c) = y$, $\beta(c + \delta) \in H_{c+\delta}^*$, and $\beta'(c) \cdot N(c) = 0$; but the last two conditions imply $\beta(c) \cdot N'(c) - r'(c) = 0$.) If we assume that $\{F_c\}$ never enters D^n , then $\{H_c^*\}$ determines a regular hyperbolic family which is parallel along some curve σ in $\overline{H^n}$. By Theorem 7, the equations for $\{F_c\}$ yield a formula for σ :

(12)
$$\sigma = rN + (1 - r^2)(r')^{-1}N'.$$

Here r' never vanishes because $\{F_c\}$ never enters D^n .

This formula may be used to construct examples, such as the following one for n=2. The curve $\sigma^*(c)=(1+c^2,c^3)$ lies outside S^1 and meets S^1 at c=0, in a cusp tangent to the x-axis. The tangent lines H_c^* to σ^* form a regular Euclidean family (even though σ^* is not regular). The focal sets of $\{H_c^*\}$ are given by $F_c=\sigma^*(c)$, and hence lie outside D^2 . Thus for a certain symmetric interval I about 0, the tangent lines to $\sigma^*|I$ determine a family $\{H_c\}$ of hyperbolic lines foliating H^2 . The parallelizing curve σ may be computed from (12) to be

$$\sigma(c) = (3c^4 + 2c^2 + 2)^{-1}(c^6 + 3c^4 + 2, -c^5 - 4c^3).$$

Note that $\sigma'(0) = 0$, as required by Corollary 3, and that σ meets S^1 at c = 0, in a cusp tangent to the x-axis.

REMARK 7. Finally, we mention one further possible direction for investigation: With regard to §4, one might ask precisely which curves $\sigma: I \to \overline{H}^n$ (taking values in both H^n and H^n_∞) allow the existence of parallel families.

REFERENCES

- 1. D. Ferus, On isometric immersions between hyperbolic spaces, Math. Ann. 205 (1973), 193-200.
- 2. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
- 3. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, Interscience, New York, 1963.
- 4. K. Nomizu, Isometric immersions of the hyperbolic plane into the hyperbolic space, Math. Ann. 205 (1973), 181-192.
- 5. B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J. 10 (1963), 335-339.
 - 6. E. Portnoy, Developable surfaces in hyperbolic space, Pacific J. Math. 57 (1975), 281-288.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801